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Abstract. We present the application of the McBryan and Spencer method to a model describing a mixture
of hard-core bosons and fermions interacting each others via a hybridization coupling. We prove upper
bounds for some correlation functions at finite temperature and then rule out the possibility of long-range
order of superconducting type in one and two dimensions.

PACS. 64.60.-i General studies of phase transitions – 74.20.Mn Nonconventional mechanisms (spin
fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi
liquid, Luttinger liquid, etc. – 71.30.+h Metal insulator transitions and other electronic transitions

1 Introduction

One of the central issues in the field of statistical me-
chanics is the quest for criteria for the existence of phase
transitions in physical systems. This issue can usually be
addressed by the identification of a quantity, the order pa-
rameter, whose average vanishes on one side of the tran-
sition, but takes on a finite value on the other side. In
a continuous phase transition, the order parameter may
gradually evolve from zero at the critical point to a finite
value on one side of the transition. Usually this happens on
the low-temperature side of the transition. Obviously, for
different kinds of phases, different order parameters must
be chosen. The occurrence of a phase transition is often
related to the failure of one of the phases to exhibit a cer-
tain symmetry property of the underlying Hamiltonians.
In this respect, Bogoliubov has devised a method based
on some inequalities for describing the occurrence of spon-
taneous symmetry-breaking in terms of quasi-averages [1].
The Bogoliubov inequality is a rigorous relation between
two essentially arbitrary operators and the Hamiltonian
of a physical system. A survey of existing proofs of the
absence of finite-temperature phase transitions in low-
dimensional systems based on this inequality is reported
in [2].

Alternatively, one can calculate some two-point corre-
lation functions and prove upper bounds for these func-
tions. If these bounds decay exponentially or with power
law, one rigorously rules out the possibility of a transi-
tion in an ordered state. The proof is based on a method
developed by McBryan and Spencer [3] for classical spin
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systems, and its extension to quantum spin systems [4].
In these papers, the global continuous symmetry of the
spin space plays an essential role. More recently, Koma
and Tasaki [5] applying this method ruled out the pos-
sibility of condensation of singlet electron pairs, such as
Cooper pairs or the η pairs [6], and the magnetic ordering
in a general class of Hubbard models. These results hold in
one and two dimensions at finite temperature. The class of
Hubbard model they refer to corresponds to tight-binding
models on one-dimensional lattice or planar lattice with
hopping matrix term txy vanishing when |x − y| exceed a
finite constant R and less of another constant t when R is
greater than |x − y|; the interaction term is an arbitrary
function of the number operators. Therefore, the class of
Hamiltonians includes for instance the Hubbard model,
the periodic Anderson model, the t − J model and also
models containing long-range, random or spin-dependent
interactions.

In this paper, by using the McBryan-Spencer approach
we give some upper bounds for certain correlation func-
tions that rule out the possibility of long-range supercon-
ducting pairing order for a the boson-fermion Hamiltonian
widely used to describe the pseudogap phase in high-Tc su-
perconductors [7]. The strategy here is to make use of the
global U(1) symmetry related to the quantum mechanical
phase with no further assumptions on the symmetry of
the system since the U(1) symmetry exists in any quan-
tum particle systems.

The rest of the paper is organized as follows. In Sec-
tion 2 the boson-fermion model is introduced and its sym-
metry properties are discussed. The upper bounds for pair-
ing correlation functions are obtained in Section 3 and
finally, in Section 4 a summary of the results is presented.
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2 The model

The experimental evidence of a pseudogap together
with numerous indications suggest that possibly a two-
component system composed out of itinerant electrons and
tightly bound electron-pairs (hardcore bosons) is involved
in the high-Tc superconductivity. The clear experimental
evidence of this pseudogap rules out any BCS type mech-
anism for superconductivity which would exclusively be
controlled by amplitude fluctuations of the order parame-
ter [8]. The onset of superconductivity at the critical tem-
perature is controlled by phase fluctuations of the order
parameter persisting to well above Tc and disappearing
only above some characteristic temperature T � where the
electrons are no longer paired.

From a theoretical point of view these features can be
addressed without having to resort to a specific micro-
scopic mechanism for electron pairing and can be studied
within effective models such as the boson-fermion model.
This model was first introduced in connection with the
many polaron problem in order to describe the crossover
regime between adiabatic and nonadiabatic behavior [9].
In such a scenario bipolarons (bosons) are envisaged to
coexist with quasifree fermions and an exchange coupling
between the bosons and the fermions is assumed by which
the bosons can decay into pairs of itinerant fermions and
vice versa. The boson-fermion model is described by the
following Hamiltonian:

H = HD + Ht + Hδ + Hg , (1)

where

HD = (D − µ)
∑
i,σ

c†iσciσ ,

Ht =
∑
i,j,σ

t(Ri − Rj)c
†
iσcjσ ,

Hδ = (δ − 2µ)
∑

i

b†ibi ,

Hg = g
∑

i

(
b†ici↓ci↑ + bic

†
i↑c

†
i↓

)
.

Here c†iσ are the creation fermion operators referring to
itinerant electrons with spin σ at i site and b†i are the
creation operators of hard core bosons describing tightly
bound electrons pair. The bare hopping integral for the
electrons located at Ri and Rj is given by t(Ri −Rj) and
we assume that satisfies the reflection symmetry t(Ri −
Rj)=t(Rj − Ri) and survives only for short-ranged over-
lapping. The bare electronic half bandwidth is denoted by
D, the boson energy level by δ and the boson-fermion pair-
exchange coupling constant by g. The chemical potential
µ is common to fermions and bosons, up to a factor 2 for
the bosons in order to guarantee the charge conservation.

Now we will discuss the symmetry properties of
the model Hamiltonian (1). Let us define locally the
following operators:

J+
i = c†i↑c

†
i↓ − b†i ,

J−
i = ci↓ci↑ − bi ,

Jz
i =

1
2

(
ni↑ + ni↓ + 2b†ibi − 2

)
,

where all the operators refer to the same lattice site.
It is straightforward to verify that these operator de-

fine a local SU(2) pseudospin symmetry, i.e.:

[J±
i , Jz

j ] = ∓J±
i δij ,

[J+
i , J−

j ] = 2Jz
i δij .

3 Correlation functions

To demonstrate the results claimed in the Introduction,
we replace the infinite lattice with a finite lattice of lin-
ear dimension L with periodic boundary conditions. The
thermal expectation value of an arbitrary operator O
is defined by 〈O〉L = Tr [O exp(−βH)] /Tr [exp(−βH)]
where the trace is calculated over all the states. We then
consider the infinite-volume expectation value defined by
〈O〉 = limL→∞〈O〉L.

To calculate the bound for some correlation functions
we make use of the global quantum mechanical phase
symmetry. The U(1) gauge transformation is represented
by the unitary operator:

U(ϑ) = Πiσ exp [−iϑiniσ] exp [−2iϑiNi] , (2)

where ϑ={ϑi} is a real arbitrary function on the lat-
tice; niσ (Ni) is the number operator for the electrons
(bosons), respectively. The operator U is invertible and
we have
Tr

[
Oe−βH

]
= Tr

{
U(ϑ)OU(ϑ)−1e−β[U(ϑ)HU(ϑ)−1]

}
, (3)

where the transformed Hamiltonian U(ϑ)H)U(ϑ)−1 is
H̃ = HD + H̃t + Hδ + Hg , (4)

with H̃t given by

H̃t =
∑
i,j,σ

t(Ri − Rj)e−i(ϑi−ϑj)c†iσcjσ .

Let us fix the lattice sites Ri and Rj and consider the
following operator O=J+

i J−
j . Introducing a set of real

functions ωi which will be specified later, we have:
U(−iω)OU(−iω)−1 = exp [−2(ωi − ωj)] O , (5)

U(−iω)HU(−iω)−1 = H + X + iY . (6)

Here
X =

∑
n,m,σ

t(Rn − Rm)[cosh(ωn − ωm) − 1]c†nσcmσ ,

Y = −i
∑

n,m,σ

t(Rn − Rm) sinh(ωn − ωm)c†nσcmσ ,

are Hermitian matrices.
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Following the same procedure used in reference [5], we can
bound the equation (3) in this way:

∣∣∣∣∣Tr
{
U(−iω)OU(−iω)−1e−β[U(−iω)H)U(−iω)−1]

} ∣∣∣∣∣
≤ e−2(ωi−ωj) || e−βX || Tr

[
e−βH

]
. (7)

We have indicated with || W || the maximum among the
absolute values of the eigenvalues of the Hermitian ma-
trix W .

With an appropriate choice of the functions {ωi} we
can give an upper bound of the left hand side of equa-
tion (7) in one and two dimensions. Making use of equa-
tion (3) and equation (7) and taking advantage of the
results reported in reference [5], we can write

| 〈O〉L |=
Tr [O exp(−βH)] /Tr [exp(−βH)] ≤ F (| Ri − Rj |) , (8)

where:

F (Ri − Rj) = e[−f(β)k1|Ri−Rj |] (D = 1) (9)

F (Ri − Rj) =| Ri − Rj |−k2f(β) (D = 2) . (10)

The function f(β) is a decreasing function of β and ki are
finite constants.

Let us introduce now the following operators η+
i

and η−
i :

η+
i = c†i↑c

†
i↓ + b†i ,

η−
i = ci↓ci↑ + bi .

These two operators and Jz
i above defined form another

SU(2) local algebra.
If we fix the lattice sites Ri and Rj and take the follow-

ing operator Õ=η+
i η−

j , we can perform the same unitary
transformation represented by U(ϑ) and we can prove the
same bound as in equation (9) in the exactly the same
manner, i.e.

| 〈Õ〉L |=
Tr

[
Õ exp(−βH)

]
/Tr [exp(−βH)] ≤ F (| Ri − Rj |) .

(11)

Using equation (8) and equation (11), we get:

| 〈O〉L + 〈Õ〉L |≤
| 〈O〉L | + | 〈Õ〉L |≤ 2F (| Ri − Rj |) . (12)

From this equation, we also deduce:

| c†i↑c
†
i↓cj↓cj↑ + b†ibj |≤ F (| Ri − Rj |) . (13)

The above bound rigorously rules out the possibility of
the condensation of electrons or electron pairs as well as
hard core bosons. Indeed, the pairing order parameter ∆

≡| c†i↑c
†
i↓cj↓cj↑ + b†ibj | is the sum of the order parameters

for pairing of electrons and hard core bosons [10,11]. When
∆=0, separately the two order parameters vanish; this is
a consequence of the hybridization term Hg that couples
the two subsystems of particle and forces the two type of
carriers to have the same critical temperature [11,12]. In
other words, we can rule out the existence of condensation
both for electrons and bosons.

4 Conclusions

In this paper, we have applied the McBryan and Spencer
method to a model describing a mixture of localized pairs
of electrons (bosons) and quasi-free electrons (fermions)
hybridizing with each other via a charge exchange term.
Firstly, we have considered a finite-system thermal aver-
age and then we have applied a unitary transformation
which preserves the phase invariance of the model. We
have shown that the boson-fermion model cannot support
a superconducting long-range order, and this result holds
for any non-zero temperature and any-filling in low dimen-
sions. It is worth pointing out that in this paper for the
first time the McBryan and Spencer approach has been
applied to a mixed boson-fermion model. Furthermore,
many results concerning the absence of finite-temperature
phase transitions in low-dimensional systems are based on
the application of the Bogoliubov inequality [2]. The gen-
eral idea is to use this inequality to find an upper bound
for the order parameter in question. The upper bound will
normally depend on the external fields that couple to the
order parameter, and on the order parameter itself. To
find a phase transition to a state with a non-zero value
of the order parameter, one must consider the behavior of
the upper bound in the case of vanishing external field: if
the assumption of non-zero order parameter leads to a vi-
olation of the upper bound, it must be dropped. Then, the
only conclusion is that the order parameter vanishes and
no phase transition occurs. Therefore, once a many-body
model has been specified by its Hamiltonian, one must
carefully chose the operators entering the Bogoliubov in-
equality so as to give the desired order parameter. On
the other hand the application of McBryan and Spencer
method is based on the use of the U(1) symmetry. The
astonishing generality of this approach can be regarded
as a demonstration of the fact that the electron hopping
plays a fundamental role in condensation phenomena in
itinerant electron systems and in this respect the results
here presented are rather generic to analogous many-body
models in one and two dimensions. It is worth stressing
that the J operators introduced in Section 2 allow to de-
duce many interesting properties of the model. Namely,
it can be shown that there are eigenstates of the Hamil-
tonian (1) supporting ODLRO and in some cases CDW
too [13].

Finally, it must be stressed that other than two-point,
long-range correlations are not excluded by the method
here used. For instance in the isotropic Heisenberg model
the four-site spin-spin correlation decays exponentially
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with increasing distance but a more complicate correla-
tion displays long-range behavior [14]. Another example
is the topological order as it occurs in the XY model,
due to Kosterlitz-Thouless transition. This kind of order
is not ruled out by an extension of the arguments pre-
sented in this paper to the XY model. It is possible that,
below a finite temperature transition, the susceptibility
diverges without the occurrence of a spontaneous mag-
netization because the correlations decay according to a
power law [15].

We gratefully acknowledge the helpful discussions with Dr. M.
Cuoco and Dr. A. Romano.
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